Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions

نویسندگان

  • M. M. Galloway
  • P. S. Chhabra
  • A. W. H. Chan
  • J. D. Surratt
  • R. C. Flagan
چکیده

Chamber studies of glyoxal uptake onto ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions. Glyoxal monomers and oligomers were the dominant organic compounds formed under the conditions of this study; glyoxal oligomer formation and overall organic growth were found to be reversible under dark conditions. Analysis of highresolution time-of-flight aerosol mass spectra provides evidence for irreversible formation of carbon-nitrogen (C-N) compounds in the aerosol. We have identified 1H-imidazole2-carboxaldehyde as one C-N product. To the authors’ knowledge, this is the first time C-N compounds resulting from condensed phase reactions with ammonium sulphate seed have been detected in aerosol. Organosulphates were not detected under dark conditions. However, active photochemistry was found to occur within aerosol during irradiated experiments. Carboxylic acids and organic esters were identified within the aerosol. An organosulphate, which had been previously assigned as glyoxal sulphate in ambient samples and chamber studies of isoprene oxidation, was observed only in the irradiated experiments. Comparison with a laboratory synthesized standard and chemical considerations strongly suggest that this organosulphate is glycolic acid sulphate, an isomer of the previously proposed glyoxal sulphate. Correspondence to: F. N. Keutsch ([email protected]) Our study shows that reversibility of glyoxal uptake should be taken into account in SOA models and also demonstrates the need for further investigation of C-N compound formation and photochemical processes, in particular organosulphate formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation

[1] The dependence of glyoxal uptake onto deliquesced ammonium sulfate seed aerosol was studied under photochemical (light + hydroxyl radical (OH)) and dark conditions. In this study, the chemical composition of aerosol formed from glyoxal is identical in the presence or absence of OH. In addition, there was no observed OH dependence on either glyoxal uptake or glyoxal‐ driven aerosol growth fo...

متن کامل

Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA) in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreve...

متن کامل

Chamber studies of SOA formation from aromatic hydrocarbons: observation of limited glyoxal uptake

This study evaluates the significance of glyoxal acting as an intermediate species leading to secondary organic aerosol (SOA) formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH4)2SO4 seed particles is observed in agreement with previous studies; however, glyoxal did not partition significantly to SOA (with or witho...

متن کامل

Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds

[1] Recent experimental evidence indicates that heterogeneous chemical reactions play an important role in the gas-particle partitioning of organic compounds, contributing to the formation and growth of secondary organic aerosol in the atmosphere. Here we present laboratory chamber studies of the reactive uptake of simple carbonyl species (formaldehyde, octanal, trans,trans-2,4-hexadienal, glyo...

متن کامل

Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics

Light-absorbing and high-molecular-weight secondary organic products were observed to result from the reaction of glyoxal in mildly acidic (pH=4) aqueous inorganic salt solutions mimicking aqueous tropospheric aerosol particles. High-molecular-weight (500–600 amu) products were observed when ammonium sulfate ((NH4)2SO4) or sodium chloride (NaCl) was present in the aqueous phase. The products fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009